
14
A TYPICAL RELATIONAL

QUERY OPTIMIZER

Life is what happens while you’re busy making other plans.

—John Lennon

In this chapter, we present a typical relational query optimizer in detail. We begin by

discussing how SQL queries are converted into units called blocks and how blocks are

translated into (extended) relational algebra expressions (Section 14.1). The central

task of an optimizer is to find a good plan for evaluating such expressions. Optimizing

a relational algebra expression involves two basic steps:

Enumerating alternative plans for evaluating the expression. Typically, an opti-

mizer considers a subset of all possible plans because the number of possible plans

is very large.

Estimating the cost of each enumerated plan, and choosing the plan with the least

estimated cost.

To estimate the cost of a plan, we must estimate the cost of individual relational

operators in the plan, using information about properties (e.g., size, sort order) of the

argument relations, and we must estimate the properties of the result of an operator

(in order to be able to compute the cost of any operator that uses this result as input).

We discussed the cost of individual relational operators in Chapter 12. We discuss

how to use system statistics to estimate the properties of the result of a relational

operation, in particular result sizes, in Section 14.2.

After discussing how to estimate the cost of a given plan, we describe the space of plans

considered by a typical relational query optimizer in Sections 14.3 and 14.4. Exploring

all possible plans is prohibitively expensive because of the large number of alternative

plans for even relatively simple queries. Thus optimizers have to somehow narrow the

space of alternative plans that they consider.

We discuss how nested SQL queries are handled in Section 14.5.

This chapter concentrates on an exhaustive, dynamic-programming approach to query

optimization. Although this approach is currently the most widely used, it cannot

satisfactorily handle complex queries. We conclude with a short discussion of other

approaches to query optimization in Section 14.6.

374

A Typical Relational Query Optimizer 375

We will consider a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: dates, rname: string)

As in Chapter 12, we will assume that each tuple of Reserves is 40 bytes long, that

a page can hold 100 Reserves tuples, and that we have 1,000 pages of such tuples.

Similarly, we will assume that each tuple of Sailors is 50 bytes long, that a page can

hold 80 Sailors tuples, and that we have 500 pages of such tuples.

14.1 TRANSLATING SQL QUERIES INTO ALGEBRA

SQL queries are optimized by decomposing them into a collection of smaller units

called blocks. A typical relational query optimizer concentrates on optimizing a single

block at a time. In this section we describe how a query is decomposed into blocks and

how the optimization of a single block can be understood in terms of plans composed

of relational algebra operators.

14.1.1 Decomposition of a Query into Blocks

When a user submits an SQL query, the query is parsed into a collection of query blocks

and then passed on to the query optimizer. A query block (or simply block) is an

SQL query with no nesting and exactly one SELECT clause and one FROM clause and

at most one WHERE clause, GROUP BY clause, and HAVING clause. The WHERE clause is

assumed to be in conjunctive normal form, as per the discussion in Section 12.3. We

will use the following query as a running example:

For each sailor with the highest rating (over all sailors), and at least two reservations

for red boats, find the sailor id and the earliest date on which the sailor has a reservation

for a red boat.

The SQL version of this query is shown in Figure 14.1. This query has two query

blocks. The nested block is:

SELECT MAX (S2.rating)

FROM Sailors S2

The nested block computes the highest sailor rating. The outer block is shown in

Figure 14.2. Every SQL query can be decomposed into a collection of query blocks

without nesting.

376 Chapter 14

SELECT S.sid, MIN (R.day)

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’ AND

S.rating = (SELECT MAX (S2.rating)

FROM Sailors S2)

GROUP BY S.sid

HAVING COUNT (*) > 1

Figure 14.1 Sailors Reserving Red Boats

SELECT S.sid, MIN (R.day)

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’ AND

S.rating = Reference to nested block

GROUP BY S.sid

HAVING COUNT (*) > 1

Figure 14.2 Outer Block of Red Boats Query

The optimizer examines the system catalogs to retrieve information about the types

and lengths of fields, statistics about the referenced relations, and the access paths (in-

dexes) available for them. The optimizer then considers each query block and chooses

a query evaluation plan for that block. We will mostly focus on optimizing a single

query block and defer a discussion of nested queries to Section 14.5.

14.1.2 A Query Block as a Relational Algebra Expression

The first step in optimizing a query block is to express it as a relational algebra

expression. For uniformity, let us assume that GROUP BY and HAVING are also operators

in the extended algebra used for plans, and that aggregate operations are allowed to

appear in the argument list of the projection operator. The meaning of the operators

should be clear from our discussion of SQL. The SQL query of Figure 14.2 can be

expressed in the extended algebra as:

πS.sid,MIN(R.day)(

HAV INGCOUNT (∗)>2(

GROUP BY S.sid(

σS.sid=R.sid∧R.bid=B.bid∧B.color=′red′∧S.rating=value from nested block(

Sailors × Reserves × Boats))))

For brevity, we’ve used S, R, and B (rather than Sailors, Reserves, and Boats) to

prefix attributes. Intuitively, the selection is applied to the cross-product of the three

A Typical Relational Query Optimizer 377

relations. Then the qualifying tuples are grouped by S.sid, and the HAVING clause

condition is used to discard some groups. For each remaining group, a result tuple

containing the attributes (and count) mentioned in the projection list is generated.

This algebra expression is a faithful summary of the semantics of an SQL query, which

we discussed in Chapter 5.

Every SQL query block can be expressed as an extended algebra expression having

this form. The SELECT clause corresponds to the projection operator, the WHERE clause

corresponds to the selection operator, the FROM clause corresponds to the cross-product

of relations, and the remaining clauses are mapped to corresponding operators in a

straightforward manner.

The alternative plans examined by a typical relational query optimizer can be under-

stood by recognizing that a query is essentially treated as a σπ× algebra expression,

with the remaining operations (if any, in a given query) carried out on the result of

the σπ× expression. The σπ× expression for the query in Figure 14.2 is:

πS.sid,R.day(

σS.sid=R.sid∧R.bid=B.bid∧B.color=′red′∧S.rating=value from nested block(

Sailors × Reserves × Boats))

To make sure that the GROUP BY and HAVING operations in the query can be carried

out, the attributes mentioned in these clauses are added to the projection list. Further,

since aggregate operations in the SELECT clause, such as the MIN(R.day) operation in

our example, are computed after first computing the σπ× part of the query, aggregate

expressions in the projection list are replaced by the names of the attributes that they

refer to. Thus, the optimization of the σπ× part of the query essentially ignores these

aggregate operations.

The optimizer finds the best plan for the σπ× expression obtained in this manner from

a query. This plan is evaluated and the resulting tuples are then sorted (alternatively,

hashed) to implement the GROUP BY clause. The HAVING clause is applied to eliminate

some groups, and aggregate expressions in the SELECT clause are computed for each

remaining group. This procedure is summarized in the following extended algebra

expression:

πS.sid,MIN(R.day)(

HAV INGCOUNT (∗)>2(

GROUP BY S.sid(

πS.sid,R.day(

σS.sid=R.sid∧R.bid=B.bid∧B.color=′red′∧S.rating=value from nested block(

Sailors × Reserves × Boats)))))

378 Chapter 14

Some optimizations are possible if the FROM clause contains just one relation and the

relation has some indexes that can be used to carry out the grouping operation. We

discuss this situation further in Section 14.4.1.

To a first approximation therefore, the alternative plans examined by a typical opti-

mizer can be understood in terms of the plans considered for σπ× queries. An optimizer

enumerates plans by applying several equivalences between relational algebra expres-

sions, which we present in Section 14.3. We discuss the space of plans enumerated by

an optimizer in Section 14.4.

14.2 ESTIMATING THE COST OF A PLAN

For each enumerated plan, we have to estimate its cost. There are two parts to esti-

mating the cost of an evaluation plan for a query block:

1. For each node in the tree, we must estimate the cost of performing the corre-

sponding operation. Costs are affected significantly by whether pipelining is used

or temporary relations are created to pass the output of an operator to its parent.

2. For each node in the tree, we must estimate the size of the result, and whether it

is sorted. This result is the input for the operation that corresponds to the parent

of the current node, and the size and sort order will in turn affect the estimation

of size, cost, and sort order for the parent.

We discussed the cost of implementation techniques for relational operators in Chapter

12. As we saw there, estimating costs requires knowledge of various parameters of the

input relations, such as the number of pages and available indexes. Such statistics are

maintained in the DBMS’s system catalogs. In this section we describe the statistics

maintained by a typical DBMS and discuss how result sizes are estimated. As in

Chapter 12, we will use the number of page I/Os as the metric of cost, and ignore

issues such as blocked access, for the sake of simplicity.

The estimates used by a DBMS for result sizes and costs are at best approximations

to actual sizes and costs. It is unrealistic to expect an optimizer to find the very best

plan; it is more important to avoid the worst plans and to find a good plan.

14.2.1 Estimating Result Sizes

We now discuss how a typical optimizer estimates the size of the result computed by

an operator on given inputs. Size estimation plays an important role in cost estimation

as well because the output of one operator can be the input to another operator, and

the cost of an operator depends on the size of its inputs.

A Typical Relational Query Optimizer 379

Consider a query block of the form:

SELECT attribute list

FROM relation list

WHERE term1 ∧ term2 ∧ . . . ∧ termn

The maximum number of tuples in the result of this query (without duplicate elimina-

tion) is the product of the cardinalities of the relations in the FROM clause. Every term

in the WHERE clause, however, eliminates some of these potential result tuples. We can

model the effect of the WHERE clause on the result size by associating a reduction

factor with each term, which is the ratio of the (expected) result size to the input

size considering only the selection represented by the term. The actual size of the re-

sult can be estimated as the maximum size times the product of the reduction factors

for the terms in the WHERE clause. Of course, this estimate reflects the—unrealistic,

but simplifying—assumption that the conditions tested by each term are statistically

independent.

We now consider how reduction factors can be computed for different kinds of terms

in the WHERE clause by using the statistics available in the catalogs:

column = value: For a term of this form, the reduction factor can be approximated

by 1
NKeys(I) if there is an index I on column for the relation in question. This

formula assumes uniform distribution of tuples among the index key values; this

uniform distribution assumption is frequently made in arriving at cost estimates

in a typical relational query optimizer. If there is no index on column, the System

R optimizer arbitrarily assumes that the reduction factor is 1
10 ! Of course, it is

possible to maintain statistics such as the number of distinct values present for

any attribute whether or not there is an index on that attribute. If such statistics

are maintained, we can do better than the arbitrary choice of 1
10 .

column1 = column2: In this case the reduction factor can be approximated by
1

MAX (NKeys(I1),NKeys(I2))
if there are indexes I1 and I2 on column1 and column2,

respectively. This formula assumes that each key value in the smaller index, say

I1, has a matching value in the other index. Given a value for column1, we

assume that each of the NKeys(I2) values for column2 is equally likely. Thus,

the number of tuples that have the same value in column2 as a given value in

column1 is 1
NKeys(I2) . If only one of the two columns has an index I, we take the

reduction factor to be 1
NKeys(I) ; if neither column has an index, we approximate

it by the ubiquitous 1
10 . These formulas are used whether or not the two columns

appear in the same relation.

column > value: The reduction factor is approximated by High(I) − value

High(I) − Low(I) if there

is an index I on column. If the column is not of an arithmetic type or there is

no index, a fraction less than half is arbitrarily chosen. Similar formulas for the

reduction factor can be derived for other range selections.

380 Chapter 14

column IN (list of values): The reduction factor is taken to be the reduction

factor for column = value multiplied by the number of items in the list. However,

it is allowed to be at most half, reflecting the heuristic belief that each selection

eliminates at least half the candidate tuples.

These estimates for reduction factors are at best approximations that rely on assump-

tions such as uniform distribution of values and independent distribution of values in

different columns. In recent years more sophisticated techniques based on storing more

detailed statistics (e.g., histograms of the values in a column, which we consider later

in this section) have been proposed and are finding their way into commercial systems.

Reduction factors can also be approximated for terms of the form column IN subquery

(ratio of the estimated size of the subquery result to the number of distinct values

in column in the outer relation); NOT condition (1−reduction factor for condition);

value1<column<value2; the disjunction of two conditions; and so on, but we will not

discuss such reduction factors.

To summarize, regardless of the plan chosen, we can estimate the size of the final result

by taking the product of the sizes of the relations in the FROM clause and the reduction

factors for the terms in the WHERE clause. We can similarly estimate the size of the

result of each operator in a plan tree by using reduction factors, since the subtree

rooted at that operator’s node is itself a query block.

Note that the number of tuples in the result is not affected by projections if duplicate

elimination is not performed. However, projections reduce the number of pages in the

result because tuples in the result of a projection are smaller than the original tuples;

the ratio of tuple sizes can be used as a reduction factor for projection to estimate

the result size in pages, given the size of the input relation.

Improved Statistics: Histograms

Consider a relation with N tuples and a selection of the form column > value on a

column with an index I. The reduction factor r is approximated by High(I) − value

High(I) − Low(I) ,

and the size of the result is estimated as rN . This estimate relies upon the assumption

that the distribution of values is uniform.

Estimates can be considerably improved by maintaining more detailed statistics than

just the low and high values in the index I. Intuitively, we want to approximate the

distribution of key values I as accurately as possible. Consider the two distributions

of values shown in Figure 14.3. The first is a nonuniform distribution D of values (say,

for an attribute called age). The frequency of a value is the number of tuples with that

age value; a distribution is represented by showing the frequency for each possible age

value. In our example, the lowest age value is 0, the highest is 14, and all recorded

A Typical Relational Query Optimizer 381

Estimating query characteristics: IBM DB2, Informix, Microsoft SQL Server,

Oracle 8, and Sybase ASE all use histograms to estimate query characteristics

such as result size and cost. As an example, Sybase ASE uses one-dimensional,

equidepth histograms with some special attention paid to high frequency values,

so that their count is estimated accurately. ASE also keeps the average count of

duplicates for each prefix of an index in order to estimate correlations between

histograms for composite keys (although it does not maintain such histograms).

ASE also maintains estimates of the degree of clustering in tables and indexes.

IBM DB2, Informix, and Oracle also use one-dimensional equidepth histograms;

Oracle automatically switches to maintaining a count of duplicates for each value

when there are few values in a column. Microsoft SQL Server uses one-dimensional

equiarea histograms with some optimizations (adjacent buckets with similar dis-

tributions are sometimes combined to compress the histogram). In SQL Server,

the creation and maintenance of histograms is done automatically without a need

for user input.

Although sampling techniques have been studied for estimating result sizes and

costs, in current systems sampling is used only by system utilities to estimate

statistics or to build histograms, but not directly by the optimizer to estimate

query characteristics. Sometimes, sampling is used to do load balancing in parallel

implementations.

age values are integers in the range 0 to 14. The second distribution approximates

D by assuming that each age value in the range 0 to 14 appears equally often in the

underlying collection of tuples. This approximation can be stored compactly because

we only need to record the low and high values for the age range (0 and 14 respectively)

and the total count of all frequencies (which is 45 in our example).

10 11 12 13 140 2 31 5 6 7 8 94 10 11 12 13 140 2 31 5 6 7 8 94

3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3

1 1

0

2

1

2

3

2

3

8

4 4

9

2

Distribution D Uniform distribution approximating D

Figure 14.3 Uniform vs. Nonuniform Distributions

Consider the selection age > 13. From the distribution D in Figure 14.3, we see that

the result has 9 tuples. Using the uniform distribution approximation, on the other

382 Chapter 14

hand, we estimate the result size as 1
15 ∗ 45 = 3 tuples. Clearly, the estimate is quite

inaccurate.

A histogram is a data structure maintained by a DBMS to approximate a data

distribution. In Figure 14.4, we show how the data distribution from Figure 14.3 can

be approximated by dividing the range of age values into subranges called buckets,

and for each bucket, counting the number of tuples with age values within that bucket.

Figure 14.4 shows two different kinds of histograms, called equiwidth and equidepth,

respectively.

10 11 12 13 140 2 31 5 6 7 8 9410 11 12 13 140 2 31 5 6 7 8 94 10 11 12 13 140 2 31 5 6 7 8 94 10 11 12 13 140 2 31 5 6 7 8 94

Equidepth

2.67

1.33

5.0

1.0

5.0

2.67

1.33

5.0

1.0

5.0

2.67

1.33

5.0

1.0

5.0
Equiwidth

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Count=8 Count=4 Count=15 Count=3 Count=15

Bucket 1Bucket 1

Count=9

Bucket 4

Count=7

Bucket 3

Count=10

Bucket 2

Count=10

Bucket 5

Count=9

2.52.25

5.0

9.0

1.75

Figure 14.4 Histograms Approximating Distribution D

Consider the selection query age > 13 again and the first (equiwidth) histogram.

We can estimate the size of the result to be 5 because the selected range includes a

third of the range for Bucket 5. Since Bucket 5 represents a total of 15 tuples, the

selected range corresponds to 1
3 ∗ 15 = 5 tuples. As this example shows, we assume

that the distribution within a histogram bucket is uniform. Thus, when we simply

maintain the high and low values for index I, we effectively use a ‘histogram’ with a

single bucket. Using histograms with a small number of buckets instead leads to much

more accurate estimates, at the cost of a few hundred bytes per histogram. (Like all

statistics in a DBMS, histograms are updated periodically, rather than whenever the

data is changed.)

One important question is how to divide the value range into buckets. In an equiwidth

histogram, we divide the range into subranges of equal size (in terms of the age value

range). We could also choose subranges such that the number of tuples within each

subrange (i.e., bucket) is equal. Such a histogram is called an equidepth histogram

and is also illustrated in Figure 14.4. Consider the selection age > 13 again. Using

the equidepth histogram, we are led to Bucket 5, which contains only the age value 15,

and thus we arrive at the exact answer, 9. While the relevant bucket (or buckets) will

generally contain more than one tuple, equidepth histograms provide better estimates

than equiwidth histograms. Intuitively, buckets with very frequently occurring values

A Typical Relational Query Optimizer 383

contain fewer values, and thus the uniform distribution assumption is applied to a

smaller range of values, leading to better approximations. Conversely, buckets with

mostly infrequent values are approximated less accurately in an equidepth histogram,

but for good estimation, it is the frequent values that are important.

Proceeding further with the intuition about the importance of frequent values, another

alternative is to separately maintain counts for a small number of very frequent values,

say the age values 7 and 14 in our example, and to maintain an equidepth (or other)

histogram to cover the remaining values. Such a histogram is called a compressed

histogram. Most commercial DBMSs currently use equidepth histograms, and some

use compressed histograms.

14.3 RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions over the same set of input relations are said to be

equivalent if they produce the same result on all instances of the input relations.

In this section we present several equivalences among relational algebra expressions,

and in Section 14.4 we discuss the space of alternative plans considered by a opti-

mizer. Relational algebra equivalences play a central role in identifying alternative

plans. Consider the query discussed in Section 13.3. As we saw earlier, pushing the

selection in that query ahead of the join yielded a dramatically better evaluation plan;

pushing selections ahead of joins is based on relational algebra equivalences involving

the selection and cross-product operators.

Our discussion of equivalences is aimed at explaining the role that such equivalences

play in a System R style optimizer. In essence, a basic SQL query block can be

thought of as an algebra expression consisting of the cross-product of all relations in

the FROM clause, the selections in the WHERE clause, and the projections in the SELECT

clause. The optimizer can choose to evaluate any equivalent expression and still obtain

the same result. Algebra equivalences allow us to convert cross-products to joins, to

choose different join orders, and to push selections and projections ahead of joins. For

simplicity, we will assume that naming conflicts never arise and that we do not need

to consider the renaming operator ρ.

14.3.1 Selections

There are two important equivalences that involve the selection operation. The first

one involves cascading of selections:

σc1∧c2∧...cn(R) ≡ σc1
(σc2

(. . . (σcn(R)) . . .))

Going from the right side to the left, this equivalence allows us to combine several

selections into one selection. Intuitively, we can test whether a tuple meets each of the

384 Chapter 14

conditions c1 . . . cn at the same time. In the other direction, this equivalence allows us

to take a selection condition involving several conjuncts and to replace it with several

smaller selection operations. Replacing a selection with several smaller selections turns

out to be very useful in combination with other equivalences, especially commutation

of selections with joins or cross-products, which we will discuss shortly. Intuitively,

such a replacement is useful in cases where only part of a complex selection condition

can be pushed.

The second equivalence states that selections are commutative:

σc1
(σc2

(R)) ≡ σc2
(σc1

(R))

In other words, we can test the conditions c1 and c2 in either order.

14.3.2 Projections

The rule for cascading projections says that successively eliminating columns from

a relation is equivalent to simply eliminating all but the columns retained by the final

projection:

πa1
(R) ≡ πa1

(πa2
(. . . (πan

(R)) . . .))

Each ai is a set of attributes of relation R, and ai ⊆ ai+1 for i = 1 . . . n − 1. This

equivalence is useful in conjunction with other equivalences such as commutation of

projections with joins.

14.3.3 Cross-Products and Joins

There are two important equivalences involving cross-products and joins. We present

them in terms of natural joins for simplicity, but they hold for general joins as well.

First, assuming that fields are identified by name rather than position, these operations

are commutative:

R × S ≡ S × R

R ⊲⊳ S ≡ S ⊲⊳ R

This property is very important. It allows us to choose which relation is to be the

inner and which the outer in a join of two relations.

The second equivalence states that joins and cross-products are associative:

R × (S × T) ≡ (R × S) × T

R ⊲⊳ (S ⊲⊳ T) ≡ (R ⊲⊳ S) ⊲⊳ T

A Typical Relational Query Optimizer 385

Thus we can either join R and S first and then join T to the result, or join S and T

first and then join R to the result. The intuition behind associativity of cross-products

is that regardless of the order in which the three relations are considered, the final

result contains the same columns. Join associativity is based on the same intuition,

with the additional observation that the selections specifying the join conditions can

be cascaded. Thus the same rows appear in the final result, regardless of the order in

which the relations are joined.

Together with commutativity, associativity essentially says that we can choose to join

any pair of these relations, then join the result with the third relation, and always

obtain the same final result. For example, let us verify that

R ⊲⊳ (S ⊲⊳ T) ≡ (T ⊲⊳ R) ⊲⊳ S

From commutativity, we have:

R ⊲⊳ (S ⊲⊳ T) ≡ R ⊲⊳ (T ⊲⊳ S)

From associativity, we have:

R ⊲⊳ (T ⊲⊳ S) ≡ (R ⊲⊳ T) ⊲⊳ S

Using commutativity again, we have:

(R ⊲⊳ T) ⊲⊳ S ≡ (T ⊲⊳ R) ⊲⊳ S

In other words, when joining several relations, we are free to join the relations in

any order that we choose. This order-independence is fundamental to how a query

optimizer generates alternative query evaluation plans.

14.3.4 Selects, Projects, and Joins

Some important equivalences involve two or more operators.

We can commute a selection with a projection if the selection operation involves only

attributes that are retained by the projection:

πa(σc(R)) ≡ σc(πa(R))

Every attribute mentioned in the selection condition c must be included in the set of

attributes a.

We can combine a selection with a cross-product to form a join, as per the definition

of join:

R ⊲⊳c S ≡ σc(R × S)

386 Chapter 14

We can commute a selection with a cross-product or a join if the selection condition

involves only attributes of one of the arguments to the cross-product or join:

σc(R × S) ≡ σc(R) × S

σc(R ⊲⊳ S) ≡ σc(R) ⊲⊳ S

The attributes mentioned in c must appear only in R, and not in S. Similar equiva-

lences hold if c involves only attributes of S and not R, of course.

In general a selection σc on R × S can be replaced by a cascade of selections σc1
, σc2

,

and σc3
such that c1 involves attributes of both R and S, c2 involves only attributes

of R, and c3 involves only attributes of S:

σc(R × S) ≡ σc1∧c2∧c3
(R × S)

Using the cascading rule for selections, this expression is equivalent to

σc1
(σc2

(σc3
(R × S)))

Using the rule for commuting selections and cross-products, this expression is equiva-

lent to

σc1
(σc2

(R) × σc3
(S)).

Thus we can push part of the selection condition c ahead of the cross-product. This

observation also holds for selections in combination with joins, of course.

We can commute a projection with a cross-product:

πa(R × S) ≡ πa1
(R) × πa2

(S)

a1 is the subset of attributes in a that appear in R, and a2 is the subset of attributes

in a that appear in S. We can also commute a projection with a join if the join

condition involves only attributes retained by the projection:

πa(R ⊲⊳c S) ≡ πa1
(R) ⊲⊳c πa2

(S)

a1 is the subset of attributes in a that appear in R, and a2 is the subset of attributes

in a that appear in S. Further, every attribute mentioned in the join condition c must

appear in a.

Intuitively, we need to retain only those attributes of R and S that are either mentioned

in the join condition c or included in the set of attributes a retained by the projection.

Clearly, if a includes all attributes mentioned in c, the commutation rules above hold.

If a does not include all attributes mentioned in c, we can generalize the commutation

rules by first projecting out attributes that are not mentioned in c or a, performing

the join, and then projecting out all attributes that are not in a:

πa(R ⊲⊳c S) ≡ πa(πa1
(R) ⊲⊳c πa2

(S))

A Typical Relational Query Optimizer 387

Now a1 is the subset of attributes of R that appear in either a or c, and a2 is the

subset of attributes of S that appear in either a or c.

We can in fact derive the more general commutation rule by using the rule for cascading

projections and the simple commutation rule, and we leave this as an exercise for the

reader.

14.3.5 Other Equivalences

Additional equivalences hold when we consider operations such as set-difference, union,

and intersection. Union and intersection are associative and commutative. Selections

and projections can be commuted with each of the set operations (set-difference, union,

and intersection). We will not discuss these equivalences further.

14.4 ENUMERATION OF ALTERNATIVE PLANS

We now come to an issue that is at the heart of an optimizer, namely, the space of

alternative plans that is considered for a given query. Given a query, an optimizer essen-

tially enumerates a certain set of plans and chooses the plan with the least estimated

cost; the discussion in Section 13.2.1 indicated how the cost of a plan is estimated.

The algebraic equivalences discussed in Section 14.3 form the basis for generating al-

ternative plans, in conjunction with the choice of implementation technique for the

relational operators (e.g., joins) present in the query. However, not all algebraically

equivalent plans are considered because doing so would make the cost of optimization

prohibitively expensive for all but the simplest queries. This section describes the

subset of plans that are considered by a typical optimizer.

There are two important cases to consider: queries in which the FROM clause contains

a single relation and queries in which the FROM clause contains two or more relations.

14.4.1 Single-Relation Queries

If the query contains a single relation in the FROM clause, only selection, projection,

grouping, and aggregate operations are involved; there are no joins. If we have just

one selection or projection or aggregate operation applied to a relation, the alternative

implementation techniques and cost estimates discussed in Chapter 12 cover all the

plans that must be considered. We now consider how to optimize queries that involve

a combination of several such operations, using the following query as an example:

For each rating greater than 5, print the rating and the number of 20-year-old sailors

with that rating, provided that there are at least two such sailors with different names.

388 Chapter 14

The SQL version of this query is shown in Figure 14.5. Using the extended algebra

SELECT S.rating, COUNT (*)

FROM Sailors S

WHERE S.rating > 5 AND S.age = 20

GROUP BY S.rating

HAVING COUNT DISTINCT (S.sname) > 2

Figure 14.5 A Single-Relation Query

notation introduced in Section 14.1.2, we can write this query as:

πS.rating,COUNT (∗)(

HAV INGCOUNTDISTINCT (S.sname)>2(

GROUP BY S.rating(

πS.rating,S.sname(

σS.rating>5∧S.age=20(

Sailors)))))

Notice that S.sname is added to the projection list, even though it is not in the SELECT

clause, because it is required to test the HAVING clause condition.

We are now ready to discuss the plans that an optimizer would consider. The main

decision to be made is which access path to use in retrieving Sailors tuples. If we

considered only the selections, we would simply choose the most selective access path

based on which available indexes match the conditions in the WHERE clause (as per the

definition in Section 12.3.1). Given the additional operators in this query, we must

also take into account the cost of subsequent sorting steps and consider whether these

operations can be performed without sorting by exploiting some index. We first discuss

the plans generated when there are no suitable indexes and then examine plans that

utilize some index.

Plans without Indexes

The basic approach in the absence of a suitable index is to scan the Sailors relation

and apply the selection and projection (without duplicate elimination) operations to

each retrieved tuple, as indicated by the following algebra expression:

πS.rating,S.sname(

σS.rating>5∧S.age=20(

Sailors))

The resulting tuples are then sorted according to the GROUP BY clause (in the exam-

ple query, on rating), and one answer tuple is generated for each group that meets

A Typical Relational Query Optimizer 389

the condition in the HAVING clause. The computation of the aggregate functions in

the SELECT and HAVING clauses is done for each group, using one of the techniques

described in Section 12.7.

The cost of this approach consists of the costs of each of these steps:

1. Performing a file scan to retrieve tuples and apply the selections and projections.

2. Writing out tuples after the selections and projections.

3. Sorting these tuples to implement the GROUP BY clause.

Note that the HAVING clause does not cause additional I/O. The aggregate computa-

tions can be done on-the-fly (with respect to I/O) as we generate the tuples in each

group at the end of the sorting step for the GROUP BY clause.

In the example query the cost includes the cost of a file scan on Sailors plus the cost

of writing out 〈S.rating, S.sname〉 pairs plus the cost of sorting as per the GROUP BY

clause. The cost of the file scan is NPages(Sailors), which is 500 I/Os, and the cost of

writing out 〈S.rating, S.sname〉 pairs is NPages(Sailors) times the ratio of the size of

such a pair to the size of a Sailors tuple times the reduction factors of the two selection

conditions. In our example the result tuple size ratio is about 0.8, the rating selection

has a reduction factor of 0.5 and we use the default factor of 0.1 for the age selection.

Thus, the cost of this step is 20 I/Os. The cost of sorting this intermediate relation

(which we will call Temp) can be estimated as 3*NPages(Temp), which is 60 I/Os, if

we assume that enough pages are available in the buffer pool to sort it in two passes.

(Relational optimizers often assume that a relation can be sorted in two passes, to

simplify the estimation of sorting costs. If this assumption is not met at run-time, the

actual cost of sorting may be higher than the estimate!) The total cost of the example

query is therefore 500 + 20 + 60 = 580 I/Os.

Plans Utilizing an Index

Indexes can be utilized in several ways and can lead to plans that are significantly

faster than any plan that does not utilize indexes.

1. Single-index access path: If several indexes match the selection conditions

in the WHERE clause, each matching index offers an alternative access path. An

optimizer can choose the access path that it estimates will result in retrieving the

fewest pages, apply any projections and nonprimary selection terms (i.e., parts of

the selection condition that do not match the index), and then proceed to compute

the grouping and aggregation operations (by sorting on the GROUP BY attributes).

2. Multiple-index access path: If several indexes using Alternatives (2) or (3) for

data entries match the selection condition, each such index can be used to retrieve

390 Chapter 14

a set of rids. We can intersect these sets of rids, then sort the result by page id

(assuming that the rid representation includes the page id) and retrieve tuples that

satisfy the primary selection terms of all the matching indexes. Any projections

and nonprimary selection terms can then be applied, followed by grouping and

aggregation operations.

3. Sorted index access path: If the list of grouping attributes is a prefix of a

tree index, the index can be used to retrieve tuples in the order required by the

GROUP BY clause. All selection conditions can be applied on each retrieved tuple,

unwanted fields can be removed, and aggregate operations computed for each

group. This strategy works well for clustered indexes.

4. Index-Only Access Path: If all the attributes mentioned in the query (in the

SELECT, WHERE, GROUP BY, or HAVING clauses) are included in the search key for

some dense index on the relation in the FROM clause, an index-only scan can be

used to compute answers. Because the data entries in the index contain all the

attributes of a tuple that are needed for this query, and there is one index entry

per tuple, we never need to retrieve actual tuples from the relation. Using just

the data entries from the index, we can carry out the following steps as needed in

a given query: apply selection conditions, remove unwanted attributes, sort the

result to achieve grouping, and compute aggregate functions within each group.

This index-only approach works even if the index does not match the selections

in the WHERE clause. If the index matches the selection, we need only examine a

subset of the index entries; otherwise, we must scan all index entries. In either

case, we can avoid retrieving actual data records; therefore, the cost of this strategy

does not depend on whether the index is clustered.

In addition, if the index is a tree index and the list of attributes in the GROUP BY

clause forms a prefix of the index key, we can retrieve data entries in the order

needed for the GROUP BY clause and thereby avoid sorting!

We now illustrate each of these four cases, using the query shown in Figure 14.5 as a

running example. We will assume that the following indexes, all using Alternative (2)

for data entries, are available: a B+ tree index on rating, a hash index on age, and a

B+ tree index on 〈rating, sname, age〉. For brevity, we will not present detailed cost

calculations, but the reader should be able to calculate the cost of each plan. The

steps in these plans are scans (a file scan, a scan retrieving tuples by using an index,

or a scan of only index entries), sorting, and writing temporary relations, and we have

already discussed how to estimate the costs of these operations.

As an example of the first case, we could choose to retrieve Sailors tuples such that

S.age=20 using the hash index on age. The cost of this step is the cost of retrieving the

index entries plus the cost of retrieving the corresponding Sailors tuples, which depends

on whether the index is clustered. We can then apply the condition S.rating> 5 to

each retrieved tuple; project out fields not mentioned in the SELECT, GROUP BY, and

A Typical Relational Query Optimizer 391

Utilizing indexes: All of the main RDBMSs recognize the importance of index-

only plans, and look for such plans whenever possible. In IBM DB2, when creating

an index a user can specify a set of ‘include’ columns that are to be kept in the

index but are not part of the index key. This allows a richer set of index-only

queries to be handled because columns that are frequently accessed are included

in the index even if they are not part of the key. In Microsoft SQL Server, an

interesting class of index-only plans is considered: Consider a query that selects

attributes sal and age from a table, given an index on sal and another index on

age. SQL Server uses the indexes by joining the entries on the rid of data records

to identify 〈sal, age〉 pairs that appear in the table.

HAVING clauses; and write the result to a temporary relation. In the example, only the

rating and sname fields need to be retained. The temporary relation is then sorted on

the rating field to identify the groups, and some groups are eliminated by applying the

HAVING condition.

As an example of the second case, we can retrieve rids of tuples satisfying rating>5

using the index on rating, retrieve rids of tuples satisfying age=20 using the index

on age, sort the retrieved rids by page number, and then retrieve the corresponding

Sailors tuples. We can retain just the rating and name fields and write the result to

a temporary relation, which we can sort on rating to implement the GROUP BY clause.

(A good optimizer might pipeline the projected tuples to the sort operator without

creating a temporary relation.) The HAVING clause is handled as before.

As an example of the third case, we can retrieve Sailors tuples such that S.rating> 5,

ordered by rating, using the B+ tree index on rating. We can compute the aggregate

functions in the HAVING and SELECT clauses on-the-fly because tuples are retrieved in

rating order.

As an example of the fourth case, we can retrieve data entries from the 〈rating, sname,

age〉 index such that rating> 5. These entries are sorted by rating (and then by sname

and age, although this additional ordering is not relevant for this query). We can choose

entries with age=20 and compute the aggregate functions in the HAVING and SELECT

clauses on-the-fly because the data entries are retrieved in rating order. In this case,

in contrast to the previous case, we do not retrieve any Sailors tuples. This property

of not retrieving data records makes the index-only strategy especially valuable with

unclustered indexes.

392 Chapter 14

14.4.2 Multiple-Relation Queries

Query blocks that contain two or more relations in the FROM clause require joins (or

cross-products). Finding a good plan for such queries is very important because these

queries can be quite expensive. Regardless of the plan chosen, the size of the final

result can be estimated by taking the product of the sizes of the relations in the FROM

clause and the reduction factors for the terms in the WHERE clause. But depending on

the order in which relations are joined, intermediate relations of widely varying sizes

can be created, leading to plans with very different costs.

In this section we consider how multiple-relation queries are optimized. We first in-

troduce the class of plans considered by a typical optimizer, and then describe how all

such plans are enumerated.

Left-Deep Plans

Consider a query of the form A ⊲⊳ B ⊲⊳ C ⊲⊳ D, that is, the natural join of four

relations. Two relational algebra operator trees that are equivalent to this query are

shown in Figure 14.6.

A B

C

D

C

A B

D

Figure 14.6 Two Linear Join Trees

We note that the left child of a join node is the outer relation and the right child is the

inner relation, as per our convention. By adding details such as the join method for

each join node, it is straightforward to obtain several query evaluation plans from these

trees. Also, the equivalence of these trees is based on the relational algebra equivalences

that we discussed earlier, particularly the associativity and commutativity of joins and

cross-products.

The form of these trees is important in understanding the space of alternative plans

explored by the System R query optimizer. Both the trees in Figure 14.6 are called

linear trees. In a linear tree, at least one child of a join node is a base relation. The

first tree is an example of a left-deep tree—the right child of each join node is a base

relation. An example of a join tree that is not linear is shown in Figure 14.7; such

trees are called bushy trees.

A Typical Relational Query Optimizer 393

A B C D

Figure 14.7 A Nonlinear Join Tree

A fundamental heuristic decision in the System R optimizer is to examine only left-

deep trees in constructing alternative plans for a join query. Of course, this decision

rules out many alternative plans that may cost less than the best plan using a left-deep

tree; we have to live with the fact that the optimizer will never find such plans. There

are two main reasons for this decision to concentrate on left-deep plans, or plans

based on left-deep trees:

1. As the number of joins increases, the number of alternative plans increases rapidly

and some pruning of the space of alternative plans becomes necessary.

2. Left-deep trees allow us to generate all fully pipelined plans, that is, plans in

which the joins are all evaluated using pipelining. Inner relations must always be

materialized fully because we must examine the entire inner relation for each tuple

of the outer relation. Thus, a plan in which an inner relation is the result of a

join forces us to materialize the result of that join. This observation motivates the

heuristic decision to consider only left-deep trees. Of course, not all plans using

left-deep trees are fully pipelined. For example, a plan that uses a sort-merge join

may require the outer tuples to be retrieved in a certain sorted order, which may

force us to materialize the outer relation.

Enumeration of Left-Deep Plans

Consider a query block of the form:

SELECT attribute list

FROM relation list

WHERE term1 ∧ term2 ∧ . . . ∧ termn

A System R style query optimizer enumerates all left-deep plans, with selections and

projections considered (but not necessarily applied!) as early as possible. The enumer-

ation of plans can be understood as a multiple-pass algorithm in which we proceed as

follows:

Pass 1: We enumerate all single-relation plans (over some relation in the FROM clause).

Intuitively, each single-relation plan is a partial left-deep plan for evaluating the query

394 Chapter 14

in which the given relation is the first (in the linear join order for the left-deep plan

of which it is a part). When considering plans involving a relation A, we identify

those selection terms in the WHERE clause that mention only attributes of A. These

are the selections that can be performed when first accessing A, before any joins that

involve A. We also identify those attributes of A that are not mentioned in the SELECT

clause or in terms in the WHERE clause involving attributes of other relations. These

attributes can be projected out when first accessing A, before any joins that involve A.

We choose the best access method for A to carry out these selections and projections,

as per the discussion in Section 14.4.1.

For each relation, if we find plans that produce tuples in different orders, we retain

the cheapest plan for each such ordering of tuples. An ordering of tuples could prove

useful at a subsequent step, say for a sort-merge join or for implementing a GROUP

BY or ORDER BY clause. Thus, for a single relation, we may retain a file scan (as the

cheapest overall plan for fetching all tuples) and a B+ tree index (as the cheapest plan

for fetching all tuples in the search key order).

Pass 2: We generate all two-relation plans by considering each single-relation plan

that is retained after Pass 1 as the outer relation and (successively) every other relation

as the inner relation. Suppose that A is the outer relation and B the inner relation for

a particular two-relation plan. We examine the list of selections in the WHERE clause

and identify:

1. Selections that involve only attributes of B and can be applied before the join.

2. Selections that serve to define the join (i.e., are conditions involving attributes of

both A and B and no other relation).

3. Selections that involve attributes of other relations and can be applied only after

the join.

The first two groups of selections can be considered while choosing an access path for

the inner relation B. We also identify the attributes of B that do not appear in the

SELECT clause or in any selection conditions in the second or third group above and

can therefore be projected out before the join.

Notice that our identification of attributes that can be projected out before the join

and selections that can be applied before the join is based on the relational algebra

equivalences discussed earlier. In particular, we are relying on the equivalences that

allow us to push selections and projections ahead of joins. As we will see, whether

we actually perform these selections and projections ahead of a given join depends

on cost considerations. The only selections that are really applied before the join are

those that match the chosen access paths for A and B. The remaining selections and

projections are done on-the-fly as part of the join.

A Typical Relational Query Optimizer 395

An important point to note is that tuples generated by the outer plan are assumed

to be pipelined into the join. That is, we avoid having the outer plan write its result

to a file that is subsequently read by the join (to obtain outer tuples). For some join

methods, the join operator might require materializing the outer tuples. For example, a

hash join would partition the incoming tuples, and a sort-merge join would sort them

if they are not already in the appropriate sort order. Nested loops joins, however,

can use outer tuples as they are generated and avoid materializing them. Similarly,

sort-merge joins can use outer tuples as they are generated if they are generated in

the sorted order required for the join. We include the cost of materializing the outer,

should this be necessary, in the cost of the join. The adjustments to the join costs

discussed in Chapter 12 to reflect the use of pipelining or materialization of the outer

are straightforward.

For each single-relation plan for A retained after Pass 1, for each join method that we

consider, we must determine the best access method to use for B. The access method

chosen for B will retrieve, in general, a subset of the tuples in B, possibly with some

fields eliminated, as discussed below. Consider relation B. We have a collection of

selections (some of which are the join conditions) and projections on a single relation,

and the choice of the best access method is made as per the discussion in Section

14.4.1. The only additional consideration is that the join method might require tuples

to be retrieved in some order. For example, in a sort-merge join we want the inner

tuples in sorted order on the join column(s). If a given access method does not retrieve

inner tuples in this order, we must add the cost of an additional sorting step to the

cost of the access method.

Pass 3: We generate all three-relation plans. We proceed as in Pass 2, except that we

now consider plans retained after Pass 2 as outer relations, instead of plans retained

after Pass 1.

Additional passes: This process is repeated with additional passes until we produce

plans that contain all the relations in the query. We now have the cheapest overall

plan for the query, as well as the cheapest plan for producing the answers in some

interesting order.

If a multiple-relation query contains a GROUP BY clause and aggregate functions such

as MIN, MAX, and SUM in the SELECT clause, these are dealt with at the very end. If the

query block includes a GROUP BY clause, a set of tuples is computed based on the rest

of the query, as described above, and this set is sorted as per the GROUP BY clause.

Of course, if there is a plan according to which the set of tuples is produced in the

desired order, the cost of this plan is compared with the cost of the cheapest plan

(assuming that the two are different) plus the sorting cost. Given the sorted set of

tuples, partitions are identified and any aggregate functions in the SELECT clause are

applied on a per-partition basis, as per the discussion in Chapter 12.

396 Chapter 14

Optimization in commercial systems: IBM DB2, Informix, Microsoft SQL

Server, Oracle 8, and Sybase ASE all search for left-deep trees using dynamic pro-

gramming, as described here, with several variations. For example, Oracle always

considers interchanging the two relations in a hash join, which could lead to right-

deep trees or hybrids. DB2 generates some bushy trees as well. Systems often use

a variety of strategies for generating plans, going beyond the systematic bottom-

up enumeration that we described, in conjunction with a dynamic programming

strategy for costing plans and remembering interesting plans (in order to avoid

repeated analysis of the same plan). Systems also vary in the degree of control

they give to users. Sybase ASE and Oracle 8 allow users to force the choice of join

orders and indexes—Sybase ASE even allows users to explicitly edit the execution

plan—whereas IBM DB2 does not allow users to direct the optimizer other than

by setting an ‘optimization level,’ which influences how many alternative plans

the optimizer considers.

Examples of Multiple-Relation Query Optimization

Consider the query tree shown in Figure 13.2. Figure 14.8 shows the same query,

taking into account how selections and projections are considered early.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Figure 14.8 A Query Tree

In looking at this figure, it is worth emphasizing that the selections shown on the

leaves are not necessarily done in a distinct step that precedes the join—rather, as we

have seen, they are considered as potential matching predicates when considering the

available access paths on the relations.

Suppose that we have the following indexes, all unclustered and using Alternative (2)

for data entries: a B+ tree index on the rating field of Sailors, a hash index on the

sid field of Sailors, and a B+ tree index on the bid field of Reserves. In addition, we

A Typical Relational Query Optimizer 397

assume that we can do a sequential scan of both Reserves and Sailors. Let us consider

how the optimizer proceeds.

In Pass 1 we consider three access methods for Sailors (B+ tree, hash index, and

sequential scan), taking into account the selection σrating>5. This selection matches

the B+ tree on rating and therefore reduces the cost for retrieving tuples that satisfy

this selection. The cost of retrieving tuples using the hash index and the sequential

scan is likely to be much higher than the cost of using the B+ tree. So the plan retained

for Sailors is access via the B+ tree index, and it retrieves tuples in sorted order by

rating. Similarly, we consider two access methods for Reserves taking into account the

selection σbid=100. This selection matches the B+ tree index on Reserves, and the cost

of retrieving matching tuples via this index is likely to be much lower than the cost of

retrieving tuples using a sequential scan; access through the B+ tree index is therefore

the only plan retained for Reserves after Pass 1.

In Pass 2 we consider taking the (relation computed by the) plan for Reserves and

joining it (as the outer) with Sailors. In doing so, we recognize that now, we need only

Sailors tuples that satisfy σrating>5 and σsid=value, where value is some value from an

outer tuple. The selection σsid=value matches the hash index on the sid field of Sailors,

and the selection σrating>5 matches the B+ tree index on the rating field. Since the

equality selection has a much lower reduction factor, the hash index is likely to be

the cheaper access method. In addition to the preceding consideration of alternative

access methods, we consider alternative join methods. All available join methods are

considered. For example, consider a sort-merge join. The inputs must be sorted by

sid; since neither input is sorted by sid or has an access method that can return tuples

in this order, the cost of the sort-merge join in this case must include the cost of

storing the two inputs in temporary relations and sorting them. A sort-merge join

provides results in sorted order by sid, but this is not a useful ordering in this example

because the projection πsname is applied (on-the-fly) to the result of the join, thereby

eliminating the sid field from the answer. Thus, the plan using sort-merge join will

be retained after Pass 2 only if it is the least expensive plan involving Reserves and

Sailors.

Similarly, we also consider taking the plan for Sailors retained after Pass 1 and joining

it (as the outer) with Reserves. Now we recognize that we need only Reserves tuples

that satisfy σbid=100 and σsid=value, where value is some value from an outer tuple.

Again, we consider all available join methods.

We finally retain the cheapest plan overall.

As another example, illustrating the case when more than two relations are joined,

consider the following query:

SELECT S.sid, COUNT(*) AS numres

398 Chapter 14

FROM Boats B, Reserves R, Sailors S

WHERE R.sid = S.sid AND B.bid=R.bid AND B.color = ‘red’

GROUP BY S.sid

This query finds the number of red boats reserved by each sailor. This query is shown

in the form of a tree in Figure 14.9.

GROUPBY sid

sid, COUNT(*) AS numres

color=’red’

sid=sid

bid=bid

Boats

Sailors

Reserves

Figure 14.9 A Query Tree

Suppose that the following indexes are available: for Reserves, a B+ tree on the sid

field and a clustered B+ tree on the bid field; for Sailors, a B+ tree index on the sid

field and a hash index on the sid field; and for Boats, a B+ tree index on the color field

and a hash index on the color field. (The list of available indexes is contrived to create

a relatively simple, illustrative example.) Let us consider how this query is optimized.

The initial focus is on the SELECT, FROM, and WHERE clauses.

Pass 1: The best plan is found for accessing each relation, regarded as the first relation

in an execution plan. For Reserves and Sailors, the best plan is obviously a file scan

because there are no selections that match an available index. The best plan for Boats

is to use the hash index on color, which matches the selection B.color = ‘red’. The B+

tree on color also matches this selection and is retained even though the hash index is

cheaper, because it returns tuples in sorted order by color.

Pass 2: For each of the plans generated in Pass 1, taken as the outer, we consider

joining another relation as the inner. Thus, we consider each of the following joins: file

scan of Reserves (outer) with Boats (inner), file scan of Reserves (outer) with Sailors

(inner), file scan of Sailors (outer) with Boats (inner), file scan of Sailors (outer) with

Reserves (inner), Boats accessed via B+ tree index on color (outer) with Sailors (inner),

Boats accessed via hash index on color (outer) with Sailors (inner), Boats accessed via

B+ tree index on color (outer) with Reserves (inner), and Boats accessed via hash

index on color (outer) with Reserves (inner).

A Typical Relational Query Optimizer 399

For each such pair, we consider each join method, and for each join method, we consider

every available access path for the inner relation. For each pair of relations, we retain

the cheapest of the plans considered for each sorted order in which the tuples are

generated. For example, with Boats accessed via the hash index on color as the outer

relation, an index nested loops join accessing Reserves via the B+ tree index on bid is

likely to be a good plan; observe that there is no hash index on this field of Reserves.

Another plan for joining Reserves and Boats is to access Boats using the hash index on

color, access Reserves using the B+ tree on bid, and use a sort-merge join; this plan,

in contrast to the previous one, generates tuples in sorted order by bid. It is retained

even if the previous plan is cheaper, unless there is an even cheaper plan that produces

the tuples in sorted order by bid! However, the previous plan, which produces tuples

in no particular order, would not be retained if this plan is cheaper.

A good heuristic is to avoid considering cross-products if possible. If we apply this

heuristic, we would not consider the following ‘joins’ in Pass 2 of this example: file

scan of Sailors (outer) with Boats (inner), Boats accessed via B+ tree index on color

(outer) with Sailors (inner), and Boats accessed via hash index on color (outer) with

Sailors (inner).

Pass 3: For each plan retained in Pass 2, taken as the outer, we consider how to join

the remaining relation as the inner. An example of a plan generated at this step is the

following: Access Boats via the hash index on color, access Reserves via the B+ tree

index on bid, and join them using a sort-merge join; then take the result of this join as

the outer and join with Sailors using a sort-merge join, accessing Sailors via the B+

tree index on the sid field. Notice that since the result of the first join is produced in

sorted order by bid, whereas the second join requires its inputs to be sorted by sid, the

result of the first join must be sorted by sid before being used in the second join. The

tuples in the result of the second join are generated in sorted order by sid.

The GROUP BY clause is considered next, after all joins, and it requires sorting on the

sid field. For each plan retained in Pass 3, if the result is not sorted on sid, we add the

cost of sorting on the sid field. The sample plan generated in Pass 3 produces tuples

in sid order; therefore it may be the cheapest plan for the query even if a cheaper plan

joins all three relations but does not produce tuples in sid order.

14.5 NESTED SUBQUERIES

The unit of optimization in a typical system is a query block, and nested queries are

dealt with using some form of nested loops evaluation. Consider the following nested

query in SQL: Find the names of sailors with the highest rating.

SELECT S.sname

FROM Sailors S

400 Chapter 14

WHERE S.rating = (SELECT MAX (S2.rating)

FROM Sailors S2)

In this simple query the nested subquery can be evaluated just once, yielding a single

value. This value is incorporated into the top-level query as if it had been part of the

original statement of the query. For example, if the highest rated sailor has a rating

of 8, the WHERE clause is effectively modified to WHERE S.rating = 8.

However, the subquery may sometimes return a relation, or more precisely, a table in

the SQL sense (i.e., possibly with duplicate rows). Consider the following query: Find

the names of sailors who have reserved boat number 103.

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

FROM Reserves R

WHERE R.bid = 103)

Again, the nested subquery can be evaluated just once, yielding a collection of sids.

For each tuple of Sailors, we must now check whether the sid value is in the computed

collection of sids; this check entails a join of Sailors and the computed collection of

sids, and in principle we have the full range of join methods to choose from. For

example, if there is an index on the sid field of Sailors, an index nested loops join with

the computed collection of sids as the outer relation and Sailors as the inner might be

the most efficient join method. However, in many systems, the query optimizer is not

smart enough to find this strategy—a common approach is to always do a nested loops

join in which the inner relation is the collection of sids computed from the subquery

(and this collection may not be indexed).

The motivation for this approach is that it is a simple variant of the technique used to

deal with correlated queries such as the following version of the previous query:

SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT *

FROM Reserves R

WHERE R.bid = 103

AND S.sid = R.sid)

This query is correlated—the tuple variable S from the top-level query appears in the

nested subquery. Therefore, we cannot evaluate the subquery just once. In this case

the typical evaluation strategy is to evaluate the nested subquery for each tuple of

Sailors.

A Typical Relational Query Optimizer 401

An important point to note about nested queries is that a typical optimizer is likely

to do a poor job, because of the limited approach to nested query optimization. This

is highlighted below:

In a nested query with correlation, the join method is effectively index nested

loops, with the inner relation typically a subquery (and therefore potentially ex-

pensive to compute). This approach creates two distinct problems. First, the

nested subquery is evaluated once per outer tuple; if the same value appears in

the correlation field (S.sid in our example) of several outer tuples, the same sub-

query is evaluated many times. The second problem is that the approach to nested

subqueries is not set-oriented. In effect, a join is seen as a scan of the outer rela-

tion with a selection on the inner subquery for each outer tuple. This precludes

consideration of alternative join methods such as a sort-merge join or a hash join,

which could lead to superior plans.

Even if index nested loops is the appropriate join method, nested query evaluation

may be inefficient. For example, if there is an index on the sid field of Reserves,

a good strategy might be to do an index nested loops join with Sailors as the

outer relation and Reserves as the inner relation, and to apply the selection on

bid on-the-fly. However, this option is not considered when optimizing the version

of the query that uses IN because the nested subquery is fully evaluated as a first

step; that is, Reserves tuples that meet the bid selection are retrieved first.

Opportunities for finding a good evaluation plan may also be missed because of

the implicit ordering imposed by the nesting. For example, if there is an index

on the sid field of Sailors, an index nested loops join with Reserves as the outer

relation and Sailors as the inner might be the most efficient plan for our example

correlated query. However, this join ordering is never considered by an optimizer.

A nested query often has an equivalent query without nesting, and a correlated query

often has an equivalent query without correlation. We have already seen correlated

and uncorrelated versions of the example nested query. There is also an equivalent

query without nesting:

SELECT S.sname

FROM Sailors S, Reserves R

WHERE S.sid = R.sid AND R.bid=103

A typical SQL optimizer is likely to find a much better evaluation strategy if it is

given the unnested or ‘decorrelated’ version of the example query than it would if it

were given either of the nested versions of the query. Many current optimizers cannot

recognize the equivalence of these queries and transform one of the nested versions to

the nonnested form. This is, unfortunately, up to the educated user. From an efficiency

standpoint, users are advised to consider such alternative formulations of a query.

402 Chapter 14

Nested queries: IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and

Sybase ASE all use some version of correlated evaluation to handle nested queries,

which are an important part of the TPC-D benchmark; IBM and Informix support

a version in which the results of subqueries are stored in a ‘memo’ table and

the same subquery is not executed multiple times. All these RDBMSs consider

decorrelation and “flattening” of nested queries as an option. Microsoft SQL

Server, Oracle 8 and IBM DB2 also use rewriting techniques, e.g., Magic Sets (see

Chapter 27) or variants, in conjunction with decorrelation.

We conclude our discussion of nested queries by observing that there could be several

levels of nesting. In general the approach that we have sketched is extended by evalu-

ating such queries from the innermost to the outermost level, in order, in the absence

of correlation. A correlated subquery must be evaluated for each candidate tuple of

the higher-level (sub)query that refers to it. The basic idea is thus similar to the case

of one-level nested queries; we omit the details.

14.6 OTHER APPROACHES TO QUERY OPTIMIZATION

We have described query optimization based on an exhaustive search of a large space

of plans for a given query. The space of all possible plans grows rapidly with the size of

the query expression, in particular with respect to the number of joins, because join-

order optimization is a central issue. Therefore, heuristics are used to limit the space

of plans considered by an optimizer. A widely used heuristic is that only left-deep

plans are considered, which works well for most queries. However, once the number

of joins becomes greater than about 15, the cost of optimization using this exhaustive

approach becomes prohibitively high, even if we consider only left-deep plans.

Such complex queries are becoming important in decision-support environments, and

other approaches to query optimization have been proposed. These include rule-based

optimizers, which use a set of rules to guide the generation of candidate plans, and

randomized plan generation, which uses probabilistic algorithms such as simulated

annealing to explore a large space of plans quickly, with a reasonable likelihood of

finding a good plan.

Current research in this area also involves techniques for estimating the size of inter-

mediate relations more accurately; parametric query optimization, which seeks to

find good plans for a given query for each of several different conditions that might be

encountered at run-time; and multiple-query optimization, in which the optimizer

takes concurrent execution of several queries into account.

A Typical Relational Query Optimizer 403

14.7 POINTS TO REVIEW

When optimizing SQL queries, they are first decomposed into small units called

blocks. The outermost query block is often called outer block; the other blocks are

called nested blocks. The first step in optimizing a query block is to translate it

into an extended relational algebra expression. Extended relational algebra also

contains operators for GROUP BY and HAVING. Optimizers consider the σπ× part

of the query separately in a first step and then apply the remaining operations

to the result of the first step. Thus, the alternative plans considered result from

optimizing the σπ× part of the query. (Section 14.1)

Each possible query plan has an associated estimated cost. Since the cost of each

operator in the query tree is estimated from the sizes of its input relations, it is

important to have good result size estimates. Consider a selection condition in

conjunctive normal form. Every term has an associated reduction factor, which is

the relative reduction in the number of result tuples due to this term. There exist

heuristic reduction factor formulas for different kinds of terms that depend on the

assumption of uniform distribution of values and independence of relation fields.

More accurate reduction factors can be obtained by using more accurate statistics,

for example histograms. A histogram is a data structure that approximates a data

distribution by dividing the value range into buckets and maintaining summarized

information about each bucket. In an equiwidth histogram, the value range is

divided into subranges of equal size. In an equidepth histogram, the range is

divided into subranges such that each subrange contains the same number of

tuples. (Section 14.2)

Two relational algebra expressions are equivalent if they produce the same output

for all possible input instances. The existence of equivalent expressions implies

a choice of evaluation strategies. Several relational algebra equivalences allow us

to modify a relational algebra expression to obtain an expression with a cheaper

plan. (Section 14.3)

Several alternative query plans are constructed. When generating plans for multi-

ple relations, heuristically only left-deep plans are considered. A plan is left-deep

if the inner relations of all joins are base relations. For plans with a single relation,

all possible access methods are considered. Possible access methods include a file

scan, a single index, multiple indexes with subsequent intersection of the retrieved

rids, usage of an index to retrieve tuples in sorted order, and an index-only access

path. Only the cheapest plan for each ordering of tuples is maintained. Query

plans for multiple relations are generated in multiple passes. In the first pass, all

cheapest single-relation plans for each output order are generated. The second

pass generates plans with one join. All plans that were generated during pass one

are considered as outer relations and every other relation as inner. Subsequent

passes proceed analogously and generate plans with more joins. This process

finally generates a plan that contains all relations in the query. (Section 14.4)

404 Chapter 14

Nested subqueries within queries are usually evaluated using some form of nested

loops join. For correlated queries, the inner block needs to be evaluated for each

tuple of the outer block. Current query optimizers do not handle nested subqueries

well. (Section 14.5)

In some scenarios the search space of the exhaustive search algorithm we described

is too large and other approaches to query optimization can be used to find a good

plan. (Section 14.6)

EXERCISES

Exercise 14.1 Briefly answer the following questions.

1. In the context of query optimization, what is an SQL query block?

2. Define the term reduction factor.

3. Describe a situation in which projection should precede selection in processing a project-

select query, and describe a situation where the opposite processing order is better.

(Assume that duplicate elimination for projection is done via sorting.)

4. If there are dense, unclustered (secondary) B+ tree indexes on both R.a and S.b, the

join R ⊲⊳a=bS could be processed by doing a sort-merge type of join—without doing any

sorting—by using these indexes.

(a) Would this be a good idea if R and S each have only one tuple per page, or would

it be better to ignore the indexes and sort R and S? Explain.

(b) What if R and S each have many tuples per page? Again, explain.

5. Why does the System R optimizer consider only left-deep join trees? Give an example

of a plan that would not be considered because of this restriction.

6. Explain the role of interesting orders in the System R optimizer.

Exercise 14.2 Consider a relation with this schema:

Employees(eid: integer, ename: string, sal: integer, title: string, age: integer)

Suppose that the following indexes, all using Alternative (2) for data entries, exist: a hash

index on eid, a B+ tree index on sal, a hash index on age, and a clustered B+ tree index

on 〈age, sal〉. Each Employees record is 100 bytes long, and you can assume that each index

data entry is 20 bytes long. The Employees relation contains 10,000 pages.

1. Consider each of the following selection conditions and, assuming that the reduction

factor (RF) for each term that matches an index is 0.1, compute the cost of the most

selective access path for retrieving all Employees tuples that satisfy the condition:

(a) sal > 100

(b) age = 25

A Typical Relational Query Optimizer 405

(c) age > 20

(d) eid = 1, 000

(e) sal > 200 ∧ age > 30

(f) sal > 200 ∧ age = 20

(g) sal > 200 ∧ title =′CFO′

(h) sal > 200 ∧ age > 30 ∧ title =′CFO′

2. Suppose that for each of the preceding selection conditions, you want to retrieve the aver-

age salary of qualifying tuples. For each selection condition, describe the least expensive

evaluation method and state its cost.

3. Suppose that for each of the preceding selection conditions, you want to compute the av-

erage salary for each age group. For each selection condition, describe the least expensive

evaluation method and state its cost.

4. Suppose that for each of the preceding selection conditions, you want to compute the

average age for each sal level (i.e., group by sal). For each selection condition, describe

the least expensive evaluation method and state its cost.

5. For each of the following selection conditions, describe the best evaluation method:

(a) sal > 200 ∨ age = 20

(b) sal > 200 ∨ title =′CFO′

(c) title =′CFO′ ∧ ename =′Joe′

Exercise 14.3 For each of the following SQL queries, for each relation involved, list the

attributes that must be examined in order to compute the answer. All queries refer to the

following relations:

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))

Dept(did: integer, dname: char(20), floor: integer, budget: real)

1. SELECT * FROM Emp

2. SELECT * FROM Emp, Dept

3. SELECT * FROM Emp E, Dept D WHERE E.did = D.did

4. SELECT E.eid, D.dname FROM Emp E, Dept D WHERE E.did = D.did

5. SELECT COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did

6. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did

7. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did AND D.floor = 5

8. SELECT E.did, COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did GROUP BY D.did

9. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor HAVING COUNT(*) > 2

10. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor ORDER BY D.floor

Exercise 14.4 You are given the following information:

406 Chapter 14

Executives has attributes ename, title, dname, and address; all are string fields of

the same length.

The ename attribute is a candidate key.

The relation contains 10,000 pages.

There are 10 buffer pages.

1. Consider the following query:

SELECT E.title, E.ename FROM Executives E WHERE E.title=‘CFO’

Assume that only 10 percent of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What

is the cost of the best plan? (In this and subsequent questions, be sure to describe

the plan that you have in mind.)

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.

What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.

What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on address is (the only index) available.

What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈ename, title〉 is (the only index) avail-

able. What is the cost of the best plan?

2. Suppose that the query is as follows:

SELECT E.ename FROM Executives E WHERE E.title=‘CFO’ AND E.dname=‘Toy’

Assume that only 10 percent of Executives tuples meet the condition E.title =′CFO′,

only 10 percent meet E.dname =′Toy′, and that only 5 percent meet both conditions.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What

is the cost of the best plan?

(b) Suppose that a clustered B+ tree index on dname is (the only index) available.

What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on 〈title, dname〉 is (the only index) avail-

able. What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on 〈title, ename〉 is (the only index) avail-

able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈dname, title, ename〉 is (the only index)

available. What is the cost of the best plan?

(f) Suppose that a clustered B+ tree index on 〈ename, title, dname〉 is (the only index)

available. What is the cost of the best plan?

3. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E GROUP BY E.title

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What

is the cost of the best plan?

A Typical Relational Query Optimizer 407

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.

What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.

What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on 〈ename, title〉 is (the only index) avail-

able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈title, ename〉 is (the only index) avail-

able. What is the cost of the best plan?

4. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E

WHERE E.dname > ‘W%’ GROUP BY E.title

Assume that only 10 percent of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What

is the cost of the best plan? If an additional index (on any search key that you

want) is available, would it help to produce a better plan?

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.

What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on dname is (the only index) available.

What is the cost of the best plan? If an additional index (on any search key that

you want) is available, would it help to produce a better plan?

(d) Suppose that a clustered B+ tree index on 〈dname, title〉 is (the only index) avail-

able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈title, dname〉 is (the only index) avail-

able. What is the cost of the best plan?

Exercise 14.5 Consider the query πA,B,C,D(R ⊲⊳A=CS). Suppose that the projection routine

is based on sorting and is smart enough to eliminate all but the desired attributes during the

initial pass of the sort, and also to toss out duplicate tuples on-the-fly while sorting, thus

eliminating two potential extra passes. Finally, assume that you know the following:

R is 10 pages long, and R tuples are 300 bytes long.

S is 100 pages long, and S tuples are 500 bytes long.

C is a key for S, and A is a key for R.

The page size is 1,024 bytes.

Each S tuple joins with exactly one R tuple.

The combined size of attributes A, B, C, and D is 450 bytes.

A and B are in R and have a combined size of 200 bytes; C and D are in S.

1. What is the cost of writing out the final result? (As usual, you should ignore this cost

in answering subsequent questions.)

2. Suppose that three buffer pages are available, and the only join method that is imple-

mented is simple (page-oriented) nested loops.

(a) Compute the cost of doing the projection followed by the join.

408 Chapter 14

(b) Compute the cost of doing the join followed by the projection.

(c) Compute the cost of doing the join first and then the projection on-the-fly.

(d) Would your answers change if 11 buffer pages were available?

3. Suppose that there are three buffer pages available, and the only join method that is

implemented is block nested loops.

(a) Compute the cost of doing the projection followed by the join.

(b) Compute the cost of doing the join followed by the projection.

(c) Compute the cost of doing the join first and then the projection on-the-fly.

(d) Would your answers change if 11 buffer pages were available?

Exercise 14.6 Briefly answer the following questions.

1. Explain the role of relational algebra equivalences in the System R optimizer.

2. Consider a relational algebra expression of the form σc(πl(R × S)). Suppose that the

equivalent expression with selections and projections pushed as much as possible, taking

into account only relational algebra equivalences, is in one of the following forms. In

each case give an illustrative example of the selection conditions and the projection lists

(c, l, c1, l1, etc.).

(a) Equivalent maximally pushed form: πl1(σc1(R) × S).

(b) Equivalent maximally pushed form: πl1(σc1(R) × σc2(S)).

(c) Equivalent maximally pushed form: σc(πl1(πl2(R) × S)).

(d) Equivalent maximally pushed form: σc1(πl1(σc2(πl2(R)) × S)).

(e) Equivalent maximally pushed form: σc1(πl1(πl2(σc2(R)) × S)).

(f) Equivalent maximally pushed form: πl(σc1(πl1(πl2(σc2(R)) × S))).

Exercise 14.7 Consider the following relational schema and SQL query. The schema cap-

tures information about employees, departments, and company finances (organized on a per

department basis).

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))

Dept(did: integer, dname: char(20), floor: integer, phone: char(10))

Finance(did: integer, budget: real, sales: real, expenses: real)

Consider the following query:

SELECT D.dname, F.budget

FROM Emp E, Dept D, Finance F

WHERE E.did=D.did AND D.did=F.did AND D.floor=1

AND E.sal ≥ 59000 AND E.hobby = ‘yodeling’

1. Identify a relational algebra tree (or a relational algebra expression if you prefer) that

reflects the order of operations that a decent query optimizer would choose.

A Typical Relational Query Optimizer 409

2. List the join orders (i.e., orders in which pairs of relations can be joined together to com-

pute the query result) that a relational query optimizer will consider. (Assume that the

optimizer follows the heuristic of never considering plans that require the computation

of cross-products.) Briefly explain how you arrived at your list.

3. Suppose that the following additional information is available: Unclustered B+ tree

indexes exist on Emp.did, Emp.sal, Dept.floor, Dept.did, and Finance.did. The system’s

statistics indicate that employee salaries range from 10,000 to 60,000, employees enjoy

200 different hobbies, and the company owns two floors in the building. There are

a total of 50,000 employees and 5,000 departments (each with corresponding financial

information) in the database. The DBMS used by the company has just one join method

available, namely, index nested loops.

(a) For each of the query’s base relations (Emp, Dept and Finance) estimate the number

of tuples that would be initially selected from that relation if all of the non-join

predicates on that relation were applied to it before any join processing begins.

(b) Given your answer to the preceding question, which of the join orders that are

considered by the optimizer has the least estimated cost?

Exercise 14.8 Consider the following relational schema and SQL query:

Suppliers(sid: integer, sname: char(20), city: char(20))

Supply(sid: integer, pid: integer)

Parts(pid: integer, pname: char(20), price: real)

SELECT S.sname, P.pname

FROM Suppliers S, Parts P, Supply Y

WHERE S.sid = Y.sid AND Y.pid = P.pid AND

S.city = ‘Madison’ AND P.price ≤ 1,000

1. What information about these relations will the query optimizer need to select a good

query execution plan for the given query?

2. How many different join orders, assuming that cross-products are disallowed, will a

System R style query optimizer consider when deciding how to process the given query?

List each of these join orders.

3. What indexes might be of help in processing this query? Explain briefly.

4. How does adding DISTINCT to the SELECT clause affect the plans produced?

5. How does adding ORDER BY sname to the query affect the plans produced?

6. How does adding GROUP BY sname to the query affect the plans produced?

Exercise 14.9 Consider the following scenario:

Emp(eid: integer, sal: integer, age: real, did: integer)

Dept(did: integer, projid: integer, budget: real, status: char(10))

Proj(projid: integer, code: integer, report: varchar)

410 Chapter 14

Assume that each Emp record is 20 bytes long, each Dept record is 40 bytes long, and each

Proj record is 2,000 bytes long on average. There are 20,000 tuples in Emp, 5,000 tuples

in Dept (note that did is not a key), and 1,000 tuples in Proj. Each department, identified

by did, has 10 projects on average. The file system supports 4,000 byte pages, and 12 buffer

pages are available. The following questions are all based on this information. You can assume

uniform distribution of values. State any additional assumptions. The cost metric to use is

the number of page I/Os. Ignore the cost of writing out the final result.

1. Consider the following two queries: “Find all employees with age = 30” and “Find all

projects with code = 20.” Assume that the number of qualifying tuples is the same

in each case. If you are building indexes on the selected attributes to speed up these

queries, for which query is a clustered index (in comparison to an unclustered index) more

important?

2. Consider the following query: “Find all employees with age > 30.” Assume that there is

an unclustered index on age. Let the number of qualifying tuples be N . For what values

of N is a sequential scan cheaper than using the index?

3. Consider the following query:

SELECT *

FROM Emp E, Dept D

WHERE E.did=D.did

(a) Suppose that there is a clustered hash index on did on Emp. List all the plans that

are considered and identify the plan with the least estimated cost.

(b) Assume that both relations are sorted on the join column. List all the plans that

are considered and show the plan with the least estimated cost.

(c) Suppose that there is a clustered B+ tree index on did on Emp and that Dept is

sorted on did. List all the plans that are considered and identify the plan with the

least estimated cost.

4. Consider the following query:

SELECT D.did, COUNT(*)

FROM Dept D, Proj P

WHERE D.projid=P.projid

GROUP BY D.did

(a) Suppose that no indexes are available. Show the plan with the least estimated cost.

(b) If there is a hash index on P.projid what is the plan with least estimated cost?

(c) If there is a hash index on D.projid what is the plan with least estimated cost?

(d) If there is a hash index on D.projid and P.projid what is the plan with least esti-

mated cost?

(e) Suppose that there is a clustered B+ tree index on D.did and a hash index on

P.projid. Show the plan with the least estimated cost.

(f) Suppose that there is a clustered B+ tree index on D.did, a hash index on D.projid,

and a hash index on P.projid. Show the plan with the least estimated cost.

(g) Suppose that there is a clustered B+ tree index on 〈D.did, D.projid〉 and a hash

index on P.projid. Show the plan with the least estimated cost.

A Typical Relational Query Optimizer 411

(h) Suppose that there is a clustered B+ tree index on 〈D.projid, D.did〉 and a hash

index on P.projid. Show the plan with the least estimated cost.

5. Consider the following query:

SELECT D.did, COUNT(*)

FROM Dept D, Proj P

WHERE D.projid=P.projid AND D.budget>99000

GROUP BY D.did

Assume that department budgets are uniformly distributed in the range 0 to 100,000.

(a) Show the plan with least estimated cost if no indexes are available.

(b) If there is a hash index on P.projid show the plan with least estimated cost.

(c) If there is a hash index on D.budget show the plan with least estimated cost.

(d) If there is a hash index on D.projid and D.budget show the plan with least estimated

cost.

(e) Suppose that there is a clustered B+ tree index on 〈D.did,D.budget〉 and a hash

index on P.projid. Show the plan with the least estimated cost.

(f) Suppose that there is a clustered B+ tree index on D.did, a hash index on D.budget,

and a hash index on P.projid. Show the plan with the least estimated cost.

(g) Suppose that there is a clustered B+ tree index on 〈D.did, D.budget, D.projid〉 and

a hash index on P.projid. Show the plan with the least estimated cost.

(h) Suppose that there is a clustered B+ tree index on 〈D.did, D.projid, D.budget〉 and

a hash index on P.projid. Show the plan with the least estimated cost.

6. Consider the following query:

SELECT E.eid, D.did, P.projid

FROM Emp E, Dept D, Proj P

WHERE E.sal=50,000 AND D.budget>20,000

E.did=D.did AND D.projid=P.projid

Assume that employee salaries are uniformly distributed in the range 10,009 to 110,008

and that project budgets are uniformly distributed in the range 10,000 to 30,000. There

is a clustered index on sal for Emp, a clustered index on did for Dept, and a clustered

index on projid for Proj.

(a) List all the one-relation, two-relation, and three-relation subplans considered in

optimizing this query.

(b) Show the plan with the least estimated cost for this query.

(c) If the index on Proj were unclustered, would the cost of the preceding plan change

substantially? What if the index on Emp or on Dept were unclustered?

412 Chapter 14

PROJECT-BASED EXERCISES

Exercise 14.10 (Note to instructors: This exercise can be made more specific by providing

additional details about the queries and the catalogs. See Appendix B.) Minibase has a nice

query optimizer visualization tool that lets you see how a query is optimized. Try initializing

the catalogs to reflect various scenarios (perhaps taken from the chapter or the other exer-

cises) and optimizing different queries. Using the graphical interface, you can look at each

enumerated plan at several levels of detail, toggle (i.e., turn on/off) the availability of indexes,

join methods, and so on.

BIBLIOGRAPHIC NOTES

Query optimization is critical in a relational DBMS, and it has therefore been extensively

studied. We have concentrated in this chapter on the approach taken in System R, as described

in [581], although our discussion incorporated subsequent refinements to the approach. [688]

describes query optimization in Ingres. Good surveys can be found in [349] and [338]. [372]

contains several articles on query processing and optimization.

From a theoretical standpoint, [132] showed that determining whether two conjunctive queries

(queries involving only selections, projections, and cross-products) are equivalent is an NP-

complete problem; if relations are multisets, rather than sets of tuples, it is not known whether

the problem is decidable, although it is Π2
p hard. The equivalence problem was shown

to be decidable for queries involving selections, projections, cross-products, and unions in

[560]; surprisingly, this problem is undecidable if relations are multisets [343]. Equivalence of

conjunctive queries in the presence of integrity constraints is studied in [26], and equivalence

of conjunctive queries with inequality selections is studied in [379].

An important problem in query optimization is estimating the size of the result of a query

expression. Approaches based on sampling are explored in [298, 299, 324, 416, 497]. The

use of detailed statistics, in the form of histograms, to estimate size is studied in [344, 487,

521]. Unless care is exercised, errors in size estimation can quickly propagate and make cost

estimates worthless for expressions with several operators. This problem is examined in [339].

[445] surveys several techniques for estimating result sizes and correlations between values in

relations. There are a number of other papers in this area, for example, [22, 143, 517, 636],

and our list is far from complete.

Semantic query optimization is based on transformations that preserve equivalence only when

certain integrity constraints hold. The idea was introduced in [375] and developed further in

[594, 127, 599].

In recent years, there has been increasing interest in complex queries for decision support

applications. Optimization of nested SQL queries is discussed in [667, 256, 364, 368, 486].

The use of the Magic Sets technique for optimizing SQL queries is studied in [482, 484, 483,

586, 583]. Rule-based query optimizers are studied in [246, 277, 425, 468, 519]. Finding a

good join order for queries with a large number of joins is studied in [391, 340, 341, 637].

Optimization of multiple queries for simultaneous execution is considered in [510, 551, 582].

A Typical Relational Query Optimizer 413

Determining query plans at run-time is discussed in [278, 342]. Re-optimization of running

queries based on statistics gathered during query execution is considered by Kabra and DeWitt

[353]. Probabilistic optimization of queries is proposed in [152, 192].

